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Abstract During the last years we collected data of abdominal septic

shock patients from clinics all over Germany. The mortality of septic
shock is about 50%. Septic shock is related to immune system reactions
and unusual measurements. Septic shock patients are intensely medi-
cated during their stay at the intensive care unit. To help physicians
recognizing the critical states of their patients as early as possible, we
built a rule based alarm system based on a neuro-fuzzy inference machine.
Analysing the patient data in a time window, we show the time depen-
dency of the classification results. We give detailed classification results
and explanation by rules. The results are compared to results obtained
by using the most common scores in intensive care medicine. We discuss
the advantages of the paradigms “neural networks” and “scores”, and
we answer the important question: Is a neural network more performant
than scores for abdominal septic shock patient data?

1 Introduction

Septic shock is of prime importance in intensive care medicine. Epidemiologic
investigations of septic shock patients show the high risk potential and the ex-
tensive therapy situation in intensive care units (ICU) [1]. Variables are often
investigated as isolated variables, not as a multidimensional whole, e.g. a recent
study inspects the role of thrombocytes [2].

Our approach to reduce mortality of septic shock patients is the automated,
intelligent retrospective search of information in documented patient records.
We analysed the data of 138 patients by using most of the usually documented
metric variables (e.g. blood pressure, leukocytes, medicament doses). Data was
collected in German hospitals from 1998 to 2001. Up to now we have digitized
138 collected handwritten patient records. 70 of the 138 patients are deceased



(50.7%). Our analysis of metric data carries on the analyses already done with
another data base and other methods, e.g. [3]. The scores that are often used in
the ICU are described in Sect. 2. To find interesting rules within the high number
of all the rules coming from subsets of all the variables we used a neuro-fuzzy
algorithm based on [4, 5] which is described in Sect. 3. Subsequently, in Sect. 4
achieved results are presented. We compare the scoring results to the neuro-fuzzy
results, and we give some meaningful rule examples. The results culminate in an
alarm system whose performance is analysed.

2 Scores in Intensive Care Medicine

How could physicians assess the patient’s health status as objectively as possible?
An easy practiced method is to model expert opinions by using a score, i.e. a
sum of points. This action is not fully objective, but it represents joint expert
opinions. By defining a threshold the score can be utilized as a classifier for
outcome prediction. We present shortly the most common scores used in intensive
care medicine. Classification results of applied scores are given in Sect. 4.4.

a) SOFA (Sepsis-Related Organ Failure Assessment) [7]: the SOFA score
assesses organ malfunctions by whole-numbered values. The sum of these values
for the single organs is called SOFA score.

b) APACHE II (Acute Physiological and Chronic Health Evaluation) [8]:
APACHE II is a score for outcome prognosis of ICU patients with respect
to acute disorders, age and the overall health status (0 to 71 whole-numbered
points).

c) SAPS II (Simplified Acute Physiology Score) [9]: The SAPS II score is a
variable reduced APACHE II score. Only 13 instead of 34 variables are used.

d)MODS (Multiple Organ Dysfunction Score) [10]: The MODS score assesses
organ states (lungs, liver, kidney, haemogram, heart, neurological system) by
whole-numbered points.

In the SOFA and MODS score we do not include the Glasgow Coma Scale
(GCS) for assessing the neurological state because of its impreciseness and its
high subjectivity.

3 The Neuro-Fuzzy System

The supervised neuro-fuzzy algorithm [4] uses the class information of the data
within its adaptation process. Here, we use the outcome labels “survived” and
“deceased” for the classes. The main advantages of the algorithm are:

– The training uses a simple heuristic geometric adaptation process that soft-
ens the combinatorical explosion (exponential growth) during the rule gen-
eration process due to multiple dimensions.

– Irrelevant attributes for every rule are detected. This is the case if a part of
a rule R has the format “if ... and varj in (−∞,+∞) and ... then class
...”. Then, the value of variable j is not relevant and so the variable could
be omitted, leading to a shorter rule R.



– Adaptive learning of the exact shape of the trapezoid membership functions.

Let us describe the ideas of the algorithm. The 2-layer neural network has
neurons in the hidden layer with n-dimensional asymmetrical trapezoidal fuzzy
activation functions. Every neuron in the first layer belongs to only one class and
represents a fuzzy rule. During the learning phase these neurons p are adapted,
i.e. the sides of the upper, smaller rectangles (= core rules) and the sides of the
lower, larger rectangles (= support rules) of the trapezoids are adapted to the
data. For every new training data point x of class c this happens in four phases,
initialized by the first training sample x1 for which one neuron is committed with
infinite side expansions in every dimension for the support rule and no (zero)
expansion for the core rule (core rule = x1):

1. cover : if x lies in the region of a support rule of the same class c as x, expand
one side of the corresponding core rule to cover x and increment the weight
of the neuron,

2. commit : if no such support rule covers x, insert a new neuron p at point x of
the same class and set its weight to one and its center z := x. The expansions
of the sides of the support rule – associated with the new neuron – are set
to infinite; the expansions of the sides of the core rule – associated with the
new neuron – are set to zero,

3. shrink committed neuron: for a committed neuron shrink the volume of the
support (and the core rectangle if necessary) within one heuristically chosen
dimension of the neuron in relation to the neurons belonging to other classes,

4. shrink conflict neurons: for all the neurons belonging to another class 6= c,
heuristically shrink the volume of both rectangles of these neurons within
one dimension in relation to x.

A sketch of the standard algorithm [4] is given in Appendix A. For imple-
mentation details of our more technical modifications and improvements see [5,
6]. Here, we place emphasis on the application to our septic shock patient data.

4 Results

At first we give a short description of the database and the datasets. Then, we
present the experimental conditions and the classification results of the neuro-
fuzzy and score classifiers with a discussion. Meaningful rule examples are pre-
sented.

4.1 The Datasets

Our database consists of 138 septic shock patients. The metric data that we
consider is composed of daily measurements and doses of medicaments. For the
experiments that are presented in Fig. 1, we consider different periods of time:
F3 (first 3 days of ICU stay), S3 (first 3 days after the septic shock occurence),
ALL (all days of ICU stay), D6–8 (days 6,7 and 8 counted from the last day,



i.e. day 0, of ICU stay), D2–4 (days 2,3 and 4 counted from the last day of ICU
stay), L5, L3, L2, L1 (last 5 resp. 3, 2, 1 day(s) of ICU stay). In Figs. 2 and 3
we regard only the period L3, cf. the explanation in Sect. 4.3.

We consider the following datasets in our contribution: frequent16 (the most
frequent 16 measured variables), haemogram, heart, lungs, bac (breathing and
catecholamines), bpt (systolic and diastolic blood pressure, thrombocytes) and
the single variables systolic blood pressure, diastolic blood pressure, thrombo-
cytes, see appendix B for more details.

Here, we will mention only our main preprocessing steps [3]: sampling (mean
values of 24h) and missing value removal (missing values are replaced by random
values from a normal distribution within the interval of the so called interquartile
range, abbr. IQR, with the median as the center).

4.2 Experimental Conditions

All the samples of the datasets are classified by the neuro-fuzzy system. Training
was done with 50% of the samples and testing with the remaining 50%. No data
from training patients is used for testing (disjunct patient sets). All experiments
with one dataset were repeated five times, so that all given results are average
values of all experiments. Thus, random results are avoided.

To compare classification performance, we use the area under the ROC curve
(AUC). The ROC curve is given by sensitivity values on y-axis and specifity val-
ues on x-axis. It is equal to 0.5 if the classifier has no performance (random
classification) and equal to 1.0 if the classifier performs without errors. Here,
each ROC curve is calculated using 10 different classification thresholds, i.e. sen-
sitivity/specifity settings. The AUC is calculated with the well known trapeze
rule for numerical integration.

4.3 Neuro-Fuzzy-System Performance

The best outcome predictor would be one that warns the physician at the first
day of ICU admission or at the first day of septic shock appearance (that is
mostly the second day of the patient’s ICU stay). With the dataset “frequent16”
we show in Fig. 1 that it is not possible to train an adequate prediction system
within such an early time interval (F3 AUC = 0.53, S3 AUC = 0.58). Also
it is not reliable to base the system on the samples of all days (ALL AUC =
0.67). Unfortunately, within the last two days often less samples are measured
by physicians so that the results considering L2 and L1 are not trusting or
significant. The best classification results are achieved considering L3 (AUC =
0.92). Thus, in the following we consider only the period L3.

The results achieved with the dataset “frequent16” (period L3) are encour-
aging, but it is not reliable for physicians to key in 16 variables. The SOFA score
is based only on 10 variables. Is it possible to achieve a similar performance
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Figure 1. “Frequent16” data: Area under ROC curve (AUC) for different periods of
time of the ICU stay.

using less variables? To answer this question, we tried out different composi-
tions of variables. The results are presented in Fig. 2. We see that single vari-
ables have not a sufficient performance. The best performance is achieved by the
haemogram (AUC = 0.90) and by “frequent16” (AUC = 0.92). As said before
keying in 14 resp. 16 variables in an alarm system is too much. Thus, the system
“bpt” (3 variables) with an equal AUC = 0.90 is a good candidate for building
an alarm system, but only if it performs not worse than the established scores,
cf. the next section.
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Figure 2. Area under ROC curve (AUC) for different data sets (last three days of ICU
stay).



4.4 Score Performance

In Fig. 3 we see that the three scores MODS, SAPS II and APACHE II perform
almost equally well (AUC = 0.79 , 0.79 resp. 0.80), considering the time period
L3. We achieve an obvious better classification using the SOFA score (AUC =
0.89). The SOFA score, that is composed of 10 variables, does not perform better
than the “bpt” or “frequent16” system. Therefore, it could be replaced in the
ICU by using an alarm system whose alarm behaviour is described in Sect. 4.6.
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Figure 3. Area under ROC curve (AUC) for the scores MODS, SAPS II, APACHE II
and SOFA.

One question remains open: Why is the adaptive data driven neural network
approach not much more performant than a “simple” score? Firstly, only one
score – the SOFA score – has a similar performance. Secondly, the SOFA score
was evaluated on 1643 patients in the USA (more than 10 times the number
of patients that we consider), surely including many expert opinions or even
statistical methods. Thirdly, our analyses are retrospective analyses with a lower
quality as potential prospective analyses due to missing values.

Without presenting all the details of our analysis, the results of a binary
logistic regression, using SPSS 9.0, are very similar to the results achieved by
our rule-based system. Thus, binary logistic regression is also not much more
performant than the SOFA score on our data.

Finally, the SOFA score is computed somewhat similar to a neural network
output: 1 up to 4 points are given individually for every variable state by a
nonlinear, discrete step function. Then, these values are added up. In a neural
network the activities of the neurons in the first layer are added up in the second
layer. Of course, the neural network learns its activities by a data driven training
autonomously. This would give better results as a score if and only if the step
functions within a score are chosen badly. Thus, it seems that the step func-
tions in the SOFA score are chosen well. If our data would have more complex,



nonlinear class borders, a neural network approach would surely give much bet-
ter results since then one cannot guess correct classification without a machine
learning approach, even not by investing a lot of time for trial and error based
data analysis. Inventing a score without using a machine learning approach is
experience based trial and error data analysis, hoping to obtain good results.

To sum up, we cannot beat sigificantly the SOFA score’s performance by our
approach (or by binary logistic regression without rule generation), but we are
able to reduce the number of variables and give important insight by our rules.
We need three variables only for our alarm system instead of ten variables used
for calculation of the SOFA score. It seems that the variables in the “bpt” sys-
tem are the “core” variables whose trends are common to most of the patients.
The use of additional variables in the other systems seems to be more influenced
by individual patient behaviour with less performant classification results. Be-
sides the “bpt” system, a mixture of variables from different systems as in the
“frequent16” system or in the SOFA score give good results.

4.5 Generated Rules

We present the results of our rule generation for the dataset “bpt”. On average
we generated 7.6 rules for the class “deceased” and 8.2 for the class “survived”.
To evaluate the performance of the rules we calculated the frequency (percentage
of all samples that imply the rule) and the confidence (percentage of samples
of the correct class considering all samples that imply the rule) of the rules on
the test data. Let us give two important examples of frequent and confident
(support) rules:

1) class survived with frequency = 30.5% and confidence = 98.4% if
systolic blood pressure ≥ 111.8 and
diastolic blood pressure ≥ 41.7 and
thrombocytes in (264.0,700.0)

2) class deceased with frequency = 40.5% and confidence = 91.4% if
systolic blood pressure ≤ 127.5 and
diastolic blood pressure ≤ 62.8 and
thrombocytes ≤ 282.0

These rules show that a lower systolic and diastolic blood pressure and a
lower number of thrombocytes indicate very critical diseasedness. Quantified
results as the results above may lead to more precise therapy options in future.

4.6 Resulting Alarm System

We identified the “bpt” system as a performant classifier (considering the time
period L3). In fact, our aim is not to predict the patients’ outcome within the
last three days of their ICU stay. We want to warn the physician during the
entire ICU stay if a patient is critical. To set up the alarm system we proceed
as follows: We tried out different output thresholds for our neuro-fuzzy system,



i.e. thresholds for adjusting sensitivity/specifity considering all samples from the
time series of the patients. For every sample we generate the alarm “very critical”
– using the trained neuro-fuzzy system – if the (normed) output od for the class
“deceased” is ≥ κ1 resp. the alarm “critical” if the (normed) output od for the
class “deceased” is κ1 > od ≥ κ2 with chosen thresholds κ1 > κ2. If od is < κ2

no alarm is given. In this manner we use our outcome predictor, trained within
the period L3, as an alarm system for the entire ICU stay. Every time a patient
becomes as critical as most of the deceased patients in the last three days, the
system generates an alarm.
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In Fig. 4 we present the average percentage of alarms given for the patients
for different time periods. Ten times more alarms in the last three days for
deceased patients than for survived patients seems to be reliable for a bedside
system.

5 Conclusion

Our aim was the extraction of information from septic shock patient measure-
ment data. For this purpose we applied an efficient improved neuro-fuzzy al-
gorithm to generate rules. We obtained interesting rules for the classes of de-
ceased and survived patients. A detailed comparison of the classification per-
formance of scores showed that the best score for septic shock outcome diag-
nosis is the SOFA score. We identified the systolic and diastolic blood pres-
sure/thrombocytes (“bpt”) system as the most relevant for outcome prediction.



It is possible to achieve a similar classification performance as by the SOFA score,
but with less variables (3 instead of 10) together with a rule-based explanation.
Our alarm system produces reliable alarms (in the last three days of the ICU stay
ten times more alarms for deceased patients then for survivors). Finally, in April
2002 we started a multicenter study to check the clinical usefulness of our system.
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Appendix A – The Neuro-Fuzzy Algorithm

parameters: ps
i (i-th neuron of class s), ws

i (weight of ps
i )

1. reset weights:
for s = 1 to number of classes do

for i = 1 to ms (number of neurons for class s) do
ws

i := 0;
set core rule volume of ps

i to zero;
end

end



2. consider all samples (x; c) with c as class label of x:
for all samples x do

if pc
i covers x then

3. cover:
wc

i := wc
i + 1;

adjust core region, so that it covers x;

4. commit new neuron:
else

zc
mc+1 := x;
set core rule volume of pc

mc+1 to zero;
set support rule volume to infinity;

5. for s 6= c, 1 ≤ j ≤ ms do
shrink pc

mc+1 using zs
j ;

end
mc := mc + 1;
wc

mc
:= 1;

end

6. shrink conflict neurons:
for s 6= c, 1 ≤ j ≤ ms do

shrink ps
j using x;

end
end

Appendix B – The Datasets

We use the following abbreviations: CVP = central venous pressure, PTT =
partial thromboplastin time, TPT = thromboplastin time, AT = anti throm-
bin, EK = erythrocytes concentrate, FFP = fresh frozen plasma, I:E = inspi-
ratory:expiratory (pressure). The units in the following datasets are only men-
tioned once:

frequent16: heart frequency [1/min], systolic blood pressure [mmHg], diastolic
blood pressure [mmHg], temperature [◦C], CVP [mmHg], O2 saturation [%],
leukocytes [1000/µl], haemoglobin [g/dl], haematocrit [%], thrombocytes [1000/
µl], PTT [s], sodium [mmol/l], potassium [mmol/l], creatinin [mg/dl], blood
sugar [mg/dl], urine volume [ml].

haemogram: leukocytes, erythrocytes [1000/µl], thrombocytes, TPT [%], PTT
[s], haemoglobin, haematocrit, thrombin time [s], AT3 [%], fibrinogen [mg/dl],
total protein [g/dl], blood sugar [mg/dl], EK [ml], FFP [ml].



heart: heart frequency, systolic blood pressure, diastolic blood pressure, CVP,
cristalloids [ml], colloids [ml], adrenaline [µg/kg/min], noradrenaline [µg/kg/min],
dopamine [µg/kg/min], dobutamine [µg/kg/min].

lungs: arterial pO2 [mmHg], arterial pCO2 [mmHg], base excess [-], bicarbonat
[mmol], O2 saturation, O2 medication [l/min], Peak [cmH2O], I:E [-], respiratory
frequency [1/min], FiO2 [%], PEEP [mmHg].

bac: FiO2, PEAK, respiratory frequency, adrenaline, noradrenaline, dopamine,
dobutamine.


